Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Organic semiconductor nickel phthalocyanine-based photocapacitive and photoresistive detector

Identifieur interne : 003B64 ( Main/Repository ); précédent : 003B63; suivant : 003B65

Organic semiconductor nickel phthalocyanine-based photocapacitive and photoresistive detector

Auteurs : RBID : Pascal:10-0373719

Descripteurs français

English descriptors

Abstract

In this study, the photosensitive organic semiconductor nickel phthalocyanine (NiPc) is investigated as a photocapacitive and photoresistive detector. NiPc thin film is grown by vacuum thermal evaporation on an indium tin oxide (ITO)-coated glass substrate. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is deposited as a top electrode by drop-casting to fabricate the ITO/NiPc/PEDOT:PSS light detector. It has been observed that under the unmodulated filament lamp illumination of up to 9720 lux the capacitance of the detectors increased up to 21, 18 and 4% at a frequency of measuring voltage of 120 Hz, 1 kHz and 10 kHz, respectively, under dark conditions. The change in resistance with the variation in the intensity of light is also investigated. The capacitance and resistance of the light detector decrease with an increase in the frequency. It is assumed that the photocapacitive and photoresistive response of the detector is associated with polarization occurring due to the transfer of photo-generated electrons and holes. The calculated results are in reasonable agreement with the experimental results.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0373719

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Organic semiconductor nickel phthalocyanine-based photocapacitive and photoresistive detector</title>
<author>
<name sortKey="Shah, Mutabar" uniqKey="Shah M">Mutabar Shah</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>GIK Institute of Engineering Sciences and Technology</s1>
<s2>Topi, 23640, NWFP</s2>
<s3>PAK</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pakistan</country>
<wicri:noRegion>GIK Institute of Engineering Sciences and Technology</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Karimov, Kh S" uniqKey="Karimov K">Kh S. Karimov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>GIK Institute of Engineering Sciences and Technology</s1>
<s2>Topi, 23640, NWFP</s2>
<s3>PAK</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pakistan</country>
<wicri:noRegion>GIK Institute of Engineering Sciences and Technology</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Physical Technical Institute of Academy of Sciences, Rudaki Ave. 33</s1>
<s2>Dushanbe, 734025</s2>
<s3>TJK</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Tadjikistan</country>
<wicri:noRegion>Dushanbe, 734025</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sayyad, M H" uniqKey="Sayyad M">M. H. Sayyad</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>GIK Institute of Engineering Sciences and Technology</s1>
<s2>Topi, 23640, NWFP</s2>
<s3>PAK</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pakistan</country>
<wicri:noRegion>GIK Institute of Engineering Sciences and Technology</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0373719</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0373719 INIST</idno>
<idno type="RBID">Pascal:10-0373719</idno>
<idno type="wicri:Area/Main/Corpus">004105</idno>
<idno type="wicri:Area/Main/Repository">003B64</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0268-1242</idno>
<title level="j" type="abbreviated">Semicond. sci. technol.</title>
<title level="j" type="main">Semiconductor science and technology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Coated material</term>
<term>Glass</term>
<term>Illumination</term>
<term>Indium oxide</term>
<term>Measurement sensor</term>
<term>Metallophthalocyanine</term>
<term>Nickel complexes</term>
<term>Organic semiconductors</term>
<term>Photocapacitance</term>
<term>Photoconductivity</term>
<term>Photodetectors</term>
<term>Polymer blends</term>
<term>Styrenesulfonate polymer</term>
<term>Thin films</term>
<term>Thiophene derivative polymer</term>
<term>Tin additions</term>
<term>Vacuum deposition</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Capteur mesure</term>
<term>Dépôt sous vide</term>
<term>Addition étain</term>
<term>Photocapacité</term>
<term>Eclairement</term>
<term>Photoconductivité</term>
<term>Photodétecteur</term>
<term>Semiconducteur organique</term>
<term>Phtalocyanine métallique</term>
<term>Complexe de nickel</term>
<term>Couche mince</term>
<term>Oxyde d'indium</term>
<term>Matériau revêtu</term>
<term>Verre</term>
<term>Thiophène dérivé polymère</term>
<term>Styrènesulfonate polymère</term>
<term>Mélange polymère</term>
<term>ITO</term>
<term>0707D</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Verre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this study, the photosensitive organic semiconductor nickel phthalocyanine (NiPc) is investigated as a photocapacitive and photoresistive detector. NiPc thin film is grown by vacuum thermal evaporation on an indium tin oxide (ITO)-coated glass substrate. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is deposited as a top electrode by drop-casting to fabricate the ITO/NiPc/PEDOT:PSS light detector. It has been observed that under the unmodulated filament lamp illumination of up to 9720 lux the capacitance of the detectors increased up to 21, 18 and 4% at a frequency of measuring voltage of 120 Hz, 1 kHz and 10 kHz, respectively, under dark conditions. The change in resistance with the variation in the intensity of light is also investigated. The capacitance and resistance of the light detector decrease with an increase in the frequency. It is assumed that the photocapacitive and photoresistive response of the detector is associated with polarization occurring due to the transfer of photo-generated electrons and holes. The calculated results are in reasonable agreement with the experimental results.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0268-1242</s0>
</fA01>
<fA02 i1="01">
<s0>SSTEET</s0>
</fA02>
<fA03 i2="1">
<s0>Semicond. sci. technol.</s0>
</fA03>
<fA05>
<s2>25</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Organic semiconductor nickel phthalocyanine-based photocapacitive and photoresistive detector</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SHAH (Mutabar)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KARIMOV (Kh S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SAYYAD (M. H.)</s1>
</fA11>
<fA14 i1="01">
<s1>GIK Institute of Engineering Sciences and Technology</s1>
<s2>Topi, 23640, NWFP</s2>
<s3>PAK</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Physical Technical Institute of Academy of Sciences, Rudaki Ave. 33</s1>
<s2>Dushanbe, 734025</s2>
<s3>TJK</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s2>075014.1-075014.5</s2>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21041</s2>
<s5>354000194707160140</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>30 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0373719</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Semiconductor science and technology</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this study, the photosensitive organic semiconductor nickel phthalocyanine (NiPc) is investigated as a photocapacitive and photoresistive detector. NiPc thin film is grown by vacuum thermal evaporation on an indium tin oxide (ITO)-coated glass substrate. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is deposited as a top electrode by drop-casting to fabricate the ITO/NiPc/PEDOT:PSS light detector. It has been observed that under the unmodulated filament lamp illumination of up to 9720 lux the capacitance of the detectors increased up to 21, 18 and 4% at a frequency of measuring voltage of 120 Hz, 1 kHz and 10 kHz, respectively, under dark conditions. The change in resistance with the variation in the intensity of light is also investigated. The capacitance and resistance of the light detector decrease with an increase in the frequency. It is assumed that the photocapacitive and photoresistive response of the detector is associated with polarization occurring due to the transfer of photo-generated electrons and holes. The calculated results are in reasonable agreement with the experimental results.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00G07D</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Capteur mesure</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Measurement sensor</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Captador medida</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Dépôt sous vide</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Vacuum deposition</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Addition étain</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Tin additions</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Photocapacité</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Photocapacitance</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Eclairement</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Illumination</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Photoconductivité</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Photoconductivity</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Photodétecteur</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Photodetectors</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Semiconducteur organique</s0>
<s5>22</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Organic semiconductors</s0>
<s5>22</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Phtalocyanine métallique</s0>
<s5>23</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Metallophthalocyanine</s0>
<s5>23</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Ftalocianina metálica</s0>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Complexe de nickel</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Nickel complexes</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>25</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>25</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>26</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>26</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>26</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Matériau revêtu</s0>
<s5>27</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Coated material</s0>
<s5>27</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Material revestido</s0>
<s5>27</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Verre</s0>
<s5>28</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Glass</s0>
<s5>28</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Thiophène dérivé polymère</s0>
<s2>NK</s2>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Thiophene derivative polymer</s0>
<s2>NK</s2>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Tiofeno derivado polímero</s0>
<s2>NK</s2>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Styrènesulfonate polymère</s0>
<s2>NK</s2>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Styrenesulfonate polymer</s0>
<s2>NK</s2>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Estireno sulfonato polímero</s0>
<s2>NK</s2>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Mélange polymère</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Polymer blends</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>0707D</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fN21>
<s1>242</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003B64 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003B64 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:10-0373719
   |texte=   Organic semiconductor nickel phthalocyanine-based photocapacitive and photoresistive detector
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024